Skip to content

Adafactor

The HuggingFace Adafactor optimizer implementation.

This implementation (including the documentation below) is taken from HuggingFace transformers library, which itself is adapted from the original fairseq implementation, which is based on the description in the paper Adafactor: Adaptive Learning Rates with Sublinear Memory Cost.

Note that this implementation differs from the PyTorch torch.optim.Adafactor one, which intentionally deviates from the original paper (the documentation of the PyTorch implementation describes these differences). However, in our experiments, the PyTorch implementation has been consistently outperformed by the original (i.e., this) implementation.

minnt.optimizers.Adafactor

Bases: Optimizer

AdaFactor pytorch implementation can be used as a drop in replacement for Adam original fairseq code: https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py

Paper: Adafactor: Adaptive Learning Rates with Sublinear Memory Cost https://huggingface.co/papers/1804.04235 Note that this optimizer internally adjusts the learning rate depending on the scale_parameter, relative_step and warmup_init options. To use a manual (external) learning rate schedule you should set scale_parameter=False and relative_step=False.

Parameters:

  • params (Iterable[Parameter]) –

    Iterable of parameters to optimize or dictionaries defining parameter groups.

  • lr (float | None, default: None ) –

    The external learning rate.

  • eps (tuple[float, float], default: (1e-30, 0.001) ) –

    Regularization constants for square gradient and parameter scale respectively

  • clip_threshold (float, default: 1.0 ) –

    Threshold of root mean square of final gradient update

  • decay_rate (float, default: -0.8 ) –

    Coefficient used to compute running averages of square

  • beta1 (float | None, default: None ) –

    Coefficient used for computing running averages of gradient

  • weight_decay (float, default: 0.0 ) –

    Weight decay (L2 penalty)

  • scale_parameter (bool, default: True ) –

    If True, learning rate is scaled by root mean square

  • relative_step (bool, default: True ) –

    If True, time-dependent learning rate is computed instead of external learning rate

  • warmup_init (bool, default: False ) –

    Time-dependent learning rate computation depends on whether warm-up initialization is being used

This implementation handles low-precision (FP16, bfloat) values, but we have not thoroughly tested.

Recommended T5 finetuning settings (https://discuss.huggingface.co/t/t5-finetuning-tips/684/3):

  • Training without LR warmup or clip_threshold is not recommended.
    • use scheduled LR warm-up to fixed LR
    • use clip_threshold=1.0 (https://huggingface.co/papers/1804.04235)
  • Disable relative updates
  • Use scale_parameter=False
  • Additional optimizer operations like gradient clipping should not be used alongside Adafactor

Example:

Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=1e-3)

Others reported the following combination to work well:

Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)

When using lr=None with [Trainer] you will most likely need to use [~optimization.AdafactorSchedule] scheduler as following:

from transformers.optimization import Adafactor, AdafactorSchedule

optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
lr_scheduler = AdafactorSchedule(optimizer)
trainer = Trainer(..., optimizers=(optimizer, lr_scheduler))

Usage:

# replace AdamW with Adafactor
optimizer = Adafactor(
    model.parameters(),
    lr=1e-3,
    eps=(1e-30, 1e-3),
    clip_threshold=1.0,
    decay_rate=-0.8,
    beta1=None,
    weight_decay=0.0,
    relative_step=False,
    scale_parameter=False,
    warmup_init=False,
)
Source code in minnt/optimizers/adafactor.py
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
class Adafactor(torch.optim.Optimizer):
    """
    AdaFactor pytorch implementation can be used as a drop in replacement for Adam original fairseq code:
    https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py

    Paper: *Adafactor: Adaptive Learning Rates with Sublinear Memory Cost* https://huggingface.co/papers/1804.04235
    Note that this optimizer internally adjusts the learning rate depending on the `scale_parameter`, `relative_step`
    and `warmup_init` options. To use a manual (external) learning rate schedule you should set `scale_parameter=False`
    and `relative_step=False`.

    Arguments:
      params (Iterable[torch.nn.parameter.Parameter]):
        Iterable of parameters to optimize or dictionaries defining parameter groups.
      lr (float | None):
        The external learning rate.
      eps (tuple[float, float]):
        Regularization constants for square gradient and parameter scale respectively
      clip_threshold (float):
        Threshold of root mean square of final gradient update
      decay_rate (float):
        Coefficient used to compute running averages of square
      beta1 (float | None):
        Coefficient used for computing running averages of gradient
      weight_decay (float):
        Weight decay (L2 penalty)
      scale_parameter (bool):
        If True, learning rate is scaled by root mean square
      relative_step (bool):
        If True, time-dependent learning rate is computed instead of external learning rate
      warmup_init (bool):
        Time-dependent learning rate computation depends on whether warm-up initialization is being used

    This implementation handles low-precision (FP16, bfloat) values, but we have not thoroughly tested.

    Recommended T5 finetuning settings (https://discuss.huggingface.co/t/t5-finetuning-tips/684/3):

    - Training without LR warmup or clip_threshold is not recommended.
        - use scheduled LR warm-up to fixed LR
        - use clip_threshold=1.0 (https://huggingface.co/papers/1804.04235)
    - Disable relative updates
    - Use scale_parameter=False
    - Additional optimizer operations like gradient clipping should not be used alongside Adafactor

    Example:

    ```python
    Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=1e-3)
    ```

    Others reported the following combination to work well:

    ```python
    Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
    ```

    When using `lr=None` with [`Trainer`] you will most likely need to use [`~optimization.AdafactorSchedule`]
    scheduler as following:

    ```python
    from transformers.optimization import Adafactor, AdafactorSchedule

    optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
    lr_scheduler = AdafactorSchedule(optimizer)
    trainer = Trainer(..., optimizers=(optimizer, lr_scheduler))
    ```

    Usage:

    ```python
    # replace AdamW with Adafactor
    optimizer = Adafactor(
        model.parameters(),
        lr=1e-3,
        eps=(1e-30, 1e-3),
        clip_threshold=1.0,
        decay_rate=-0.8,
        beta1=None,
        weight_decay=0.0,
        relative_step=False,
        scale_parameter=False,
        warmup_init=False,
    )
    ```"""

    def __init__(
        self,
        params,
        lr=None,
        eps=(1e-30, 1e-3),
        clip_threshold=1.0,
        decay_rate=-0.8,
        beta1=None,
        weight_decay=0.0,
        scale_parameter=True,
        relative_step=True,
        warmup_init=False,
    ):
        if lr is not None and relative_step:
            raise ValueError("Cannot combine manual `lr` and `relative_step=True` options")
        if warmup_init and not relative_step:
            raise ValueError("`warmup_init=True` requires `relative_step=True`")

        defaults = {
            "lr": lr,
            "eps": eps,
            "clip_threshold": clip_threshold,
            "decay_rate": decay_rate,
            "beta1": beta1,
            "weight_decay": weight_decay,
            "scale_parameter": scale_parameter,
            "relative_step": relative_step,
            "warmup_init": warmup_init,
        }
        super().__init__(params, defaults)

    @staticmethod
    def _get_lr(param_group, param_state):
        rel_step_sz = param_group["lr"]
        if param_group["relative_step"]:
            min_step = 1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2
            rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))
        param_scale = 1.0
        if param_group["scale_parameter"]:
            param_scale = max(param_group["eps"][1], param_state["RMS"])
        return param_scale * rel_step_sz

    @staticmethod
    def _get_options(param_group, param_shape):
        factored = len(param_shape) >= 2
        use_first_moment = param_group["beta1"] is not None
        return factored, use_first_moment

    @staticmethod
    def _rms(tensor):
        return tensor.norm(2) / (tensor.numel() ** 0.5)

    @staticmethod
    def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col):
        # copy from fairseq's adafactor implementation:
        # https://github.com/huggingface/transformers/blob/8395f14de6068012787d83989c3627c3df6a252b/src/transformers/optimization.py#L505
        r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1)
        c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
        return torch.mul(r_factor, c_factor)

    @torch.no_grad()
    def step(self, closure=None):
        """
        Performs a single optimization step

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None:
                    continue
                grad = p.grad
                if grad.dtype in {torch.float16, torch.bfloat16}:
                    grad = grad.float()
                if grad.is_sparse:
                    raise RuntimeError("Adafactor does not support sparse gradients.")

                state = self.state[p]
                grad_shape = grad.shape

                factored, use_first_moment = self._get_options(group, grad_shape)
                # State Initialization
                if len(state) == 0:
                    state["step"] = 0

                    if use_first_moment:
                        # Exponential moving average of gradient values
                        state["exp_avg"] = torch.zeros_like(grad)
                    if factored:
                        state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad)
                        state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad)
                    else:
                        state["exp_avg_sq"] = torch.zeros_like(grad)

                    state["RMS"] = 0
                else:
                    if use_first_moment:
                        state["exp_avg"] = state["exp_avg"].to(grad)
                    if factored:
                        state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
                        state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
                    else:
                        state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)

                p_data_fp32 = p
                if p.dtype in {torch.float16, torch.bfloat16}:
                    p_data_fp32 = p_data_fp32.float()

                state["step"] += 1
                state["RMS"] = self._rms(p_data_fp32)
                lr = self._get_lr(group, state)

                beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
                update = (grad**2) + group["eps"][0]
                if factored:
                    exp_avg_sq_row = state["exp_avg_sq_row"]
                    exp_avg_sq_col = state["exp_avg_sq_col"]

                    exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t))
                    exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t))

                    # Approximation of exponential moving average of square of gradient
                    update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
                    update.mul_(grad)
                else:
                    exp_avg_sq = state["exp_avg_sq"]

                    exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
                    update = exp_avg_sq.rsqrt().mul_(grad)

                update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
                update.mul_(lr)

                if use_first_moment:
                    exp_avg = state["exp_avg"]
                    exp_avg.mul_(group["beta1"]).add_(update, alpha=(1 - group["beta1"]))
                    update = exp_avg

                if group["weight_decay"] != 0:
                    p_data_fp32.add_(p_data_fp32, alpha=(-group["weight_decay"] * lr))

                p_data_fp32.add_(-update)

                if p.dtype in {torch.float16, torch.bfloat16}:
                    p.copy_(p_data_fp32)

        return loss

step

step(closure=None)

Performs a single optimization step

Parameters:

  • closure (callable, default: None ) –

    A closure that reevaluates the model and returns the loss.

Source code in minnt/optimizers/adafactor.py
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
@torch.no_grad()
def step(self, closure=None):
    """
    Performs a single optimization step

    Arguments:
        closure (callable, optional): A closure that reevaluates the model
            and returns the loss.
    """
    loss = None
    if closure is not None:
        loss = closure()

    for group in self.param_groups:
        for p in group["params"]:
            if p.grad is None:
                continue
            grad = p.grad
            if grad.dtype in {torch.float16, torch.bfloat16}:
                grad = grad.float()
            if grad.is_sparse:
                raise RuntimeError("Adafactor does not support sparse gradients.")

            state = self.state[p]
            grad_shape = grad.shape

            factored, use_first_moment = self._get_options(group, grad_shape)
            # State Initialization
            if len(state) == 0:
                state["step"] = 0

                if use_first_moment:
                    # Exponential moving average of gradient values
                    state["exp_avg"] = torch.zeros_like(grad)
                if factored:
                    state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad)
                    state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad)
                else:
                    state["exp_avg_sq"] = torch.zeros_like(grad)

                state["RMS"] = 0
            else:
                if use_first_moment:
                    state["exp_avg"] = state["exp_avg"].to(grad)
                if factored:
                    state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
                    state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
                else:
                    state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)

            p_data_fp32 = p
            if p.dtype in {torch.float16, torch.bfloat16}:
                p_data_fp32 = p_data_fp32.float()

            state["step"] += 1
            state["RMS"] = self._rms(p_data_fp32)
            lr = self._get_lr(group, state)

            beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
            update = (grad**2) + group["eps"][0]
            if factored:
                exp_avg_sq_row = state["exp_avg_sq_row"]
                exp_avg_sq_col = state["exp_avg_sq_col"]

                exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t))
                exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t))

                # Approximation of exponential moving average of square of gradient
                update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
                update.mul_(grad)
            else:
                exp_avg_sq = state["exp_avg_sq"]

                exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
                update = exp_avg_sq.rsqrt().mul_(grad)

            update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
            update.mul_(lr)

            if use_first_moment:
                exp_avg = state["exp_avg"]
                exp_avg.mul_(group["beta1"]).add_(update, alpha=(1 - group["beta1"]))
                update = exp_avg

            if group["weight_decay"] != 0:
                p_data_fp32.add_(p_data_fp32, alpha=(-group["weight_decay"] * lr))

            p_data_fp32.add_(-update)

            if p.dtype in {torch.float16, torch.bfloat16}:
                p.copy_(p_data_fp32)

    return loss